EMC Commissioning for the 2002-2003 run

- EMC detector
- Review of last year run
- Installed system
- What worked and what didn't work
- EMC for the next run
- Installed system
- System modifications
- Commissioning plan

EMC detector overview

- Full barrel EMC
- -1.0 < || < 1.0
- Full azimutal coverage
- 120 modules
- $(\square\square, \square\square)_{module} \sim (1.0, 0.1)$
- 40 towers/module
- 21 X₀
- (□□, □□)_{tower} ~ (0.05, 0.05)
- dE/E ~ 14%//E
- Shower max detector
- Positioned at $\sim 5 \times_0$
- Larger spatial resolution
- (□□, □□) ~ (0.007, 0.007)
- Pre-shower detector
- 2 X

EMC Module

A. A. P. Straida

EMC trigger overview

- Photons, electrons, \square^0 , jets, E_{t}
- Trigger patches
- 4 × 4 towers
- (0.2, 0.2)
- Highest tower in patch (HT)
- 0.5 GeV energy resolution
- Patch sum
- Look up table
- Jet trigger
- Sum over patches for 8 modules
- E_t trigger
- Total Energy on EMC (centrality trigger)

Review of last year run – Installed patch ...

- Heavy-ion run
- 12 modules instrumented
- 480 towers
- (□□, □□) ~ (1.0, 1.2)
- Running since late august
- No SMD most of time
- Last week of HI only
- pp run
- 22 modules instrumented
- 880 towers
- · (III, IIII) ~ (1.0, 2.2)
- SMD
- High-tower trigger

... and what worked

- Not 100% of instrumented patch took data
- Digitizer crates problems
- A few High Towers were turned off
- Noise on some high towers
- 12 bits ADC -> 6 bits Trigger ADC problems
- PMT Boxes problems
- HV interlock problem on PMT 4 during HI run
- HV stability problem during nun dd
- Heavy-ion run
- 10/12 modules working
- pp run
- 16/22 modules working
- High tower trigger

What were the problems? High voltage system

- Original system didn't work
- One serial line for 60 modules
- Daisy chained through a special board in the digitizer crate
- Strong noises and fluctuations on serial line
- Temporary fix (not perfect but usable)
- One serial line for each 3 PMT boxes (6 modules)
- Dirty connections
- Some noise on serial line
- Reduced speed on data transfer
- Sometimes we lost communication with PMT boxes
- High voltage instability on some PMT boxes
- High voltage turns off after a few minutes for some boxes

What were the problems? Tower crates

- Digitizer electronics
- sometimes is lost Connection between crate and Tower Data Collector (TDC)
- Data is garbage
- Need to power cycle and reprogram everything
- Trigger electronics
- 6 bits ADC conversion didn't work for some patches
- Trigger mask didn't work for some patches
- Trigger programming instability
- Need to power cycle and reprogram crate
- Crates failure
- Two power supply failures
- Replaced after a few days

What were the problems? SMD

- SMD Crate
- Was hanging up DAQ
- · Fixed after the crate was reprogrammed
- HDLC line
- · Not possible to daisy chain SMD crate (under investigation)
- One power supply failure
- Fixed after the crate was sent to LBNL for repair
- SMD FEEs
- Some didn't work well
- No signal, high noise
- Were replaced but some modules didn't work because of the lack of spares
- Thermo switch interlock sensitive to the magnetic field
- Just noticed on one FEE board (kept off)
- High Voltage problem with some modules
- STAR Alexandre A. P. Suaide Wayne State University Analysis meeting and trigger workshop - 2002

What were the problems? DAQ and trigger

DAQ

- Stop/busy/halt (you name it) problem for TDC
- · Didn't work
- problems with high event rates
- SMD busy didn't work most of the run
- Always needed a slower detector to provide busy

Trigger

- EMC signal was arriving too late
- Fixed after modifications that removed one layer of DSM's (not final solution)
- Trigger stability (fixed by the end of pp run)

What were the problems? Need for experts

- System was too complicated to run
- Tower electronics
- Many clicks (30-50) to bring the system up
- No good tools for debugging/monitoring
- SMD electronics
- Many clicks to bring the system up
- No good tools for debugging/monitoring
- High voltage system
- SC program is very easy to use but HV instability required an expert for operation

But the run wasn't that bad at all...

- EMC took data
- Almost half of minimum
 bias data for towers
- Almost all central data
- Almost half of pp
 minimum bias data
- About 800 k high tower
 triggers
- EMC gain stability
- \sim 5% gain variation over
- 3 weeks
- Analysis is going on... data is good.

EMC for the next run. Installed system

- Full West side installed
- 36 more modules
- 60 tower modules
- 60 SMD modules
- EMC LO trigger
- Huge impact on physics
- High-p₊ □°
- Jets
- SPECIAL DESIGN PMT'S BOXES
- INSTALLED MODULES
- ELECTRONICS CRATES AFFECTED BY THE DETECTOR SUPPORT STRUCTURE, POSITION HAS TO BE REASSIGNED.
- BOXES THAT REQUIRE SOME MODIFICATION
- MODULES INSTRUMENTED

Installation schedule

- Modules
- Full West side
- Including modules under TPC support
- Installation done by 9/5
- PMT boxes
- Install 18 new PMT boxes
- Remove and modify 6 old PMT boxes
- Install fibers and utilities
- Installation done by 10/15
- Electronics (?)

Commissioning plan. High voltage

- New serial communication
- Serial line splitters
- One serial line for 60 modules
- Faster communication
- · Low noise
- ALREADY TESTED last month in BNL
- Stability using LED trigger
- Almost the same control program
- One button (on/off)
- Small internal modifications
- Need to have digitizer crates installed to test full system (crate provides power to PMTB)
- HV will be set to ADC uniformity in Et, not E
- Will provide trigger on Et instead of E
- gains (working groups should define the dinamic range) Different settings for AuAu and pp to have different

Commissioning plan. Tower digitizer crates

- Better QA will be done prior to installation
- Now that we know what to expect from crates
- Programming and timing stability
- Can be done using cosmic rays trigger using CTB and LED trigger
- New tools to monitor crate
- New SC software
- Easier to use (one on/off button)
- Will be tested soon
- DAQ
- Busy/halt/stop
- Pedestal subtraction

Commissioning plan. SMD

- HDLC line problem is being checked at LBNL
- Will have more time to test FEEs
- Calibration pulse will be available
- Find bad channels
- Strip gain uniformity
- New SC program
- Easier to use.
- Same as towers'
- DAQ
- Will test busy better
- Pedestal subtraction

Commissioning plan. Trigger

- installation Trigger electronics will have different QA before
- each digitizer board Will check 6 bits conversion and trigger masks for
- ADC 63 problem is being debugged
- Trigger stability
- Tested using EMC to trigger cosmic rays, checking rates for different thresholds

Commissioning plan. Online QA, calibrations, etc.

- New event display
- Will include trigger data
- Online histograms
- Different histograms now that we know better what to look
- Calibration
- Pre calibration using L3 tracks
- Will be done online (not a L3 algorithm) using L3 tracks and events from event pool
- Will need less events (higher coverage)

Detectors experts during commissioning (?)

- M. Moura A. Suaide Online and Offline software, QA, SC programs
- O. Grachov O. Tsai S. Tentralange . Riso SMD Fiber optics, PMT boxes Modules,
- V. Petrov Minor Ghazikhanian 0 Trigger **Electronics High Voltage** system
- A. Vander Molen